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ABSTRACT

We document a pilot stochastic re-analysis computed by assimilating sea surface temperature (SST) anomalies

into the ocean component of the coupled Norwegian Climate Prediction Model (NorCPM) for the period

1950�2010 (doi: 10.11582/2016.00002). NorCPM is based on the Norwegian Earth System Model and uses the

ensemble Kalman filter for data assimilation (DA). Here, we assimilate SST from the stochastic HadISST2

historical reconstruction. The accuracy, reliability and drift are investigated using both assimilated and

independent observations. NorCPM is slightly overdispersive against assimilated observations but shows

stable performance through the analysis period. It demonstrates skills against independent measurements: sea

surface height, heat and salt content, in particular in the Equatorial and North Pacific, the North Atlantic

Subpolar Gyre (SPG) region and the Nordic Seas. Furthermore, NorCPM provides a reliable monitoring of

the SPG index and represents the vertical temperature variability there, in good agreement with observations.

The monitoring of the Atlantic meridional overturning circulation is also encouraging. The benefit of using a

flow-dependent assimilation method and constructing the covariance in isopycnal coordinates are investigated

in the SPG region. Isopycnal coordinates discretisation is found to better capture the vertical structure than

standard depth-coordinate discretisation, because it leads to a deeper influence of the assimilated surface

observations. The vertical covariance shows a pronounced seasonal and decadal variability that highlights the

benefit of flow-dependent DA method. This study demonstrates the potential of NorCPM to compute an

ocean re-analysis for the 19th and 20th centuries when SST observations are available.

Keywords: Ocean re-analysis, EnKF, isopycnal ocean model, SST coupled re-analysis, weakly coupled data

assimilation, NorCPM, Flow dependent assimilation

1. Introduction

It is of crucial societal importance to understand the

sensitivity of our climate to anthropogenic forcing. As

observations of our climate are sparse and are homoge-

neously distributed, it is often hard to disentangle anthro-

pogenic climate change from natural climate variability.

Historical reanalyses aim to provide continuous and reliable

reconstructions of past climate by fusing the scarce observa-

tions into physically consistent climate systems. They can

also be used as initial conditions for predictions. Thus, they

are useful for understanding the mechanisms for climate

change and predictability during the historical period.While

such reconstructions of the atmosphere have been available

for over a decade (Kalnay et al., 1996; Dee et al., 2011), the

paucity of observations makes long-term oceanic recon-

structions more challenging.

Generally speaking, there are three approaches to re-

construct past ocean variability. (1) Ocean global circula-

tion models (OGCMs) forced by atmospheric re-analysis

provide a first-order reconstruction of past ocean variability

(Danabasoglu et al., 2014). However, oceanic variability is
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not fully determined by atmospheric forcing, and there are

inaccuracies in ocean models and the atmospheric forcing.

(2) Assimilation of ocean observations into forced OGCMs

improves on this first class of reconstruction (Carton and

Giese, 2008; Köhl and Stammer, 2008; Ferry et al., 2010;

Sakov et al., 2012; Karspeck et al., 2013; Oke et al., 2013;

Storto et al., 2015; Zuo et al., 2015). While they can reach

high levels of accuracy, they do not optimally account

for the coupled dynamics of the climate system affecting

the realism of the variability mechanisms. (3) Assimilating

observations directly into a fully coupled earth system

model can better represent the interactions between climate

system components (Fujii and Kamachi, 2003; Keenlyside

et al., 2005; Saha et al., 2010; Zhang et al., 2010; Swingedouw

et al., 2012; Brune et al., 2015; Laloyaux et al., 2015;

Mochizuki et al., 2016). The Norwegian Climate Prediction

Model (NorCPM) belongs to this third class.

Coupled ocean re-analysis products differ in the choice

of observations assimilated and in the complexity of the

data assimilation (DA) methods employed. Zhang et al.

(2010) emphasised the importance of Argo floats for con-

straining the ocean and demonstrated that with a modern

observation network, the variability in the North Atlantic

can be accurately monitored. However, apart from sea sur-

face temperature (SST) that is available to some level of

accuracy from 1850, very few observations are available

before the 1990s: satellite altimetry is only available from

1993 and vertical sampling of the hydrography is only

sporadically observed prior to the Argo floats programme

starting in the early 2000s. Several studies have thus

attempted to constrain the climate system based on SST

only in order to provide a long consistent reconstruction

and demonstrate the skill of initialised prediction for

seasonal-to-decadal time scale. Simple nudging of coupled

model SST to observations was shown to have some skill

in the North Atlantic and in the tropical Pacific (Keenlyside

et al., 2005, 2008; Swingedouw et al., 2012; Mignot et al.,

2015). Counillon et al. (2014) attempted to use advanced

DA to constrain the full-water depth from SST data with

NorCPM. The low-frequency variability of the ocean was

successfully controlled, and skilful decadal predictions

were achieved in the North Atlantic and the Nordic Seas.

However, the results were carried in a twin experiment

that assumes a perfect model framework. The current study

aims at demonstrating the skill of NorCPM in a realistic

framework and, in particular, in its capability to provide a

re-analysis. The system assimilates the HadISST2 product

(Kennedy et al., 2015; Rayner et al., 2015) for the period

1950�2010, a period during which many independent ob-

servations are available for validation. By mimicking the

shortage of ocean observations, we assess the potential

of NorCPM for providing a re-analysis for periods during

the 19th and 20th centuries when ocean observations

are effectively limited to SST. Although it is clear that the

current re-analysis cannot match the level of accuracy

of other systems that make use of all observations (Carton

and Giese, 2008; Saha et al., 2010; Zhang et al., 2010;

Karspeck et al., 2013; Laloyaux et al., 2015), it does have

some assets. The introduction of new types of observations

in the course of a re-analysis introduces discontinuities,

which are limited here. Large efforts were also made in the

DA method to minimise the assimilation shocks and pre-

serve the physical consistency of the system. The system

provides a stochastic reconstruction of the climate that can

be used to estimate the accuracy of the system in time and

space. This re-analysis will also serve as a first prototype

for initialising climate prediction for the Decadal Climate

Prediction Project (DCPP) of the Coupled Model Inter-

comparison Project (CMIP) phase 6 (Eyring et al., 2015).

NorCPM combines the Norwegian Earth System Model

(NorESM) with the ensemble Kalman filter (EnKF; Evensen,

2007) DAmethod. NorESM (Bentsen et al., 2012) is a state-

of-the-art climate model that participated in the 5th CMIP.

The model is based on the Community Earth SystemModel

(CESM) from the National Center for Atmospheric Re-

search, but uses an isopycnal coordinates ocean model and

a different atmospheric chemistry and ocean biochemistry

model. The EnKF is an advanced DAmethod that provides

flow-dependent and multivariate covariance to extrapolate

the correction to unobserved variables based on an ensemble

of model states. The EnKF has several advantages for climate

prediction. First, it is designed for a dynamical system such

as our climate system and as such provides a more reliable

covariance than a static covariance matrix (Sakov and

Sandery, 2015). This becomes critical when the observational

network is sparse. Second, the covariance is constructed from

the model itself, which ensures that the updates satisfy the

model dynamics (under the linear hypotheses) and limits the

assimilation shocks (Evensen, 2003). NorCPM is not the first

EnKF-based system for reconstructing our climate (Zhang

et al., 2007;Karspeck et al., 2013; Brune et al., 2015).However,

it has several particularities. First, the EnKF is applied to

an isopycnal ocean model, which can have some advantages

(Gavart and De Mey, 1997; Srinivasan et al., 2011). Second,

it uses a fairly large ensemble size with 30 members in a

fully coupled configuration. In Counillon et al. (2014), this

ensemble sizewas found sufficient to avoid the need for vertical

localisation. Finally, it assimilates the new HadISST2 product

(Kennedy et al., 2015; Rayner et al., 2015), which provides a

stochastic reconstruction of SST � that is, providing a three-

dimensional estimate of the measurement and its accuracy �
for the period 1850�2010.
This paper is organised as follows. Section 2 presents

NorCPM, which combines NorESM (Section 2.1), the

EnKF (Section 2.2) and the HadISST2 observations

assimilated (Section 2.3). A global validation of the system
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is carried out in Section 3, against the assimilated SST

product (Section 3.1) and independent measurements: the

steric global mean sea level (Section 3.2), variability of sea

surface height (SSH, Section 3.3), and heat and salt content

variability (Section 3.4). In Section 4, we evaluate NorCPM

in the North Atlantic Subpolar Gyre (SPG) region and

investigate the advantages of constructing flow-dependent

covariance in isopycnal coordinates there. A summary and

conclusions are given in Section 5.

2. The Norwegian Climate Prediction System

2.1. The Norwegian Earth System Model

NorESM (Bentsen et al., 2012) is a global fully coupled

system for climate simulations. It is based on the CESM

version 1.0.3 (CESM1, Vertenstein et al., 2012), a successor

to the Community Climate System Model version 4 (Gent

et al., 2011). As in CESM1, NorESM uses the Community

Land Model version 4 (Oleson et al., 2010; Lawrence et al.,

2011) and the Los Alamos sea ice model version 4 (Gent

et al., 2011; Holland et al., 2012) with the version 7 coupler

(Craig et al., 2011). NorESM key differences to CESM1

are the atmospheric and the ocean components. Unlike in

the Community Atmosphere Model (CAM4, Neale et al.,

2010), the atmospheric component (CAM4-OSLO) features

advanced aerosol chemistry schemes that also account for

indirect aerosol effects (Kirkevåg et al., 2013). The ocean

component (Bentsen et al., 2012) is an updated version of the

Miami isopycnal coordinate ocean model (MICOM, Bleck

et al., 1992). With potential density as vertical coordinates,

the model layer interfaces are a good approximation to

neutral surfaces and allow for minimising spurious mixing

compared with other choices of vertical coordinates. This

allows for an excellent preservation ofwatermass properties.

The reference potential densities are selected to best repre-

sent characteristic water masses. Potential densities are

referenced here to 2000 dbar to maximise neutrality of the

isopycnal surfaces (McDougall and Jackett, 2005).When the

potential density of a layer falls outside the range of its

reference densities in the water column, it becomes empty

or massless. The model ensures the conservation of mass

(non-Boussinesq) and conservation of potential vorticity/

enstrophy for the momentum equation (Sadourny, 1975).

The model uses the incremental remapping algorithm

(Dukowicz and Baumgardner, 2000) for the advection of

layer thickness and tracer (e.g. potential temperature and

salinity); this is expressed in a flux form and ensures the

conservation (and monotonicity) of mass and tracers. The

model uses a bulk surfacemixed layer that is divided into two

layers with freely evolving density. The first isopycnal layer

(below the mixed layer) is not required to stay close to its

prescribed reference potential density. A diapycnal diffusion

scheme adjusts an isopycnal layer’s potential density to its

reference potential density when the two differ. For further

model details, see Bentsen et al. (2012).

This study uses the medium-resolution NorESM1-ME

(Tjiputra et al., 2013), which has the capability to be

fully emission driven and has contributed with output to

CMIP5. External forcings used here comply with CMIP5’s

historical experiment [see Bentsen et al., 2012, for details].

The atmosphere and land model have a resolution of 1.9�2.5

(or f19 for the approximately 28 finite volume grid). The ocean

and sea ice have a horizontal resolution of approximately

18. The ocean uses 51 isopycnal layers and 2 additional layers

for representing the bulk mixed layer. Note that there is no

relaxation towards climatology.

2.2. The ensemble Kalman filter

Currently, only SST is assimilated in NorCPM and it is

used to update the water column below. As DA is only

performed in the ocean component, the system belongs to

the class of weakly coupled DA (Laloyaux et al., 2015),

where the adjustment between the individual compartments

occurs dynamically during the integration of the system.

The EnKF is a recursive DA method that consists of

a Monte Carlo integration and a Bayesian update that

uses the sample covariance matrix from the ensemble

of integrations. The ensemble of N model states (X) is

denoted by

X ¼ ½x1; :: :; xN �;2 Rn�N ; (1)

where n is the size of the model state and x contains the full

model state; that is, temperature, salinity, zonal and

meridional velocities, and the layer thickness in isopycnal

coordinates. The method is optimal when the model and

the observation error are Gaussian and unbiased, in which

case the ensemble mean ðXÞ provides the most likely

estimation (i.e. it coincides with the maximum of like-

lihood) and the model covariance (P) provides a reliable

estimate of the forecast error ðEÞ:

EET � P ¼ 1

N � 1
AAT; (2)

where the superscript T denotes a matrix transpose

and A the ensemble anomaly (i.e. A ¼ X � X1T, with

1m ¼ ½1; 1; :::; 1� 2 R1�N ). The analysis is performedmonthly

and it uses the observations (d) and their associated

covariance matrix (R) to estimate a new ensemble of model

states Xa. The observation error covariance matrix R is

assumed diagonal for simplicity (i.e. the observation errors

are assumed uncorrelated). We use the deterministic EnKF

(DEnKF; Sakov and Oke, 2008). It is a square-root

(deterministic) formulation of the EnKF that solves the

analysis without the need for perturbation of the observations.

ISOPYCNAL OCEAN REANALYSIS 3



It overestimates the analysed error covariance by adding a

semi-definite positive term to the theoretical error covar-

iance given by the Kalman filter, which reduces the amount

of inflation needed. The analysis performs the update of the

ensemble mean [eq. (3)] and the update of the ensemble

anomaly [eq. (4)] separately, and it reconstructs the analysis

ensemble by combining the two [eq. (5)]:

Xa ¼ Xf þ Kðd�HXfÞ; (3)

Aa ¼ Af � 1

2
KHAf; (4)

Xa ¼ Aa þ Xa1 (5)

The superscript ‘a’ refers to the analysis state and ‘f’ to the

forecast, and H is the measurement operator relating

the prognostic model state variables to the measurements.

The Kalman gain (K) is computed as follows:

K ¼ PHT HPHT þ R
� ��1

: (6)

Most of the settings follow the perfect model study of

Counillon et al. (2014). The full water column and all

variables are updated. This ensures the conservation of

the linear properties and the equality between the sum of

the layer thickness and the bottom pressure for each

individual member. The horizontal localisation radius is

limited to the grid cell dimensions, which vary from region

to region (maximum radius �1.258). This may introduce

discontinuity in the update, but the spatial smoothness

is ensured by the spatial autocorrelation of the model and

the observations, which are available at every grid cell

(except below the sea ice). Although our system uses the

DEnKF that limits the need for inflation, some inflation

is still needed to counteract ensemble spread collapse

caused by sampling error and unfulfilled prior assumptions.

The ensemble spread is sustained by using the moderation

technique and the pre-screening method (Sakov et al., 2012).

The ensemble forecast, Xf, consists of the ensemble of

restart files in the middle of the month and is compared to

the monthly averaged observations (d). The analysis update

is only applied to the first time level (of the leap frog scheme)

and copied to the second time level to control the computa-

tional inconsistencies due to DA adjustments (see Zhang

et al., 2004). The initial ensemble is generated by spinning

up an ensemble of states (sampled from a long preindustrial

forcing run) with real historical forcing from 1850 to 1950.

This ensures that the initial ensemble spans sufficient spread

in the interior of the ocean and that every member has ex-

perienced identical external forcing. In order to avoid

an abrupt start of the DA spin up, the observation error

variance is inflated by a factor of 8 and gradually decreased

over five assimilation cycles (5 months), as proposed in

Sakov et al. (2012).

Here, we use a real framework, and thus the model

has biases. There are two common strategies to handle bias:

full-field assimilation (with subsequent post-processing) or

anomaly assimilation (on a biased model climatology). Both

methods have their advantages and disadvantages; see

Weber et al. (2015) for further details on the two methods.

Full-field assimilation is more problematic in ensemble

DA (Dee, 2005). Indeed, models are attracted to their biased

climatological states, and the model bias in the observed

variables gets recursively transferred to the non-observed

variables by the multivariate covariance matrix, which leads

to a slow degradation of the system during the analysis

period. As we only assimilate one variable (SST), we decided

to use anomaly assimilation. The climatological monthly

mean for the observations and the model are calculated for

the period 1950�2009. This assumes erroneously that only

the mean state of the system is biased but not its climate

sensitivity and variability; a choice that may lead to a sub-

optimal analysis, but avoids transferring error to non-

observed regions (typically in the deep ocean).

We also employ the aggregation method (Wang et al.,

2016), which is a cost-efficient modification of the linear

analysis update to reduce error in DA methods for physi-

cally constrained variables. MICOM is isopycnal in its

vertical coordinates and one of its state variables � the layer

thickness � varies in space and time but is always positive

and, thus, has a truncated Gaussian distribution. The linear

analysis update of the EnKF may inevitably return un-

physical (negative) values. To remedy this, we are iteratively

aggregating the variables in the vertical until no unphysical

solution is returned. This approach is found to reduce the

drift by a factor of 10 compared with the standard post-

processing approach used in Counillon et al. (2014), and it

does not impair the efficiency of assimilation. Furthermore,

no other affordable solution has been proposed to preserve

the mass, heat and salt content for each layer.

During the course of the re-analysis, two minor bugs were

found. The first one is observation anomalies below �3 8C
were discarded. The second one is observations were

displaced by 18 meridionally. The sensitivity of our system

to these bugs was tested by carrying out a parallel analysis

(with and without the bug) for the period 1980�2010. The
performance of the system and the result presented in this

article were barely discernible. In the following, the result

concatenates the re-analysis that has the bugs during the

period 1950�1980 with the bug-free version for the period

1980�2010.

2.3. SST observations

Ten realisations of the preliminary HadISST2 data set

(HadISST2.1.0.0, Rayner et al., 2015) observations have

been assimilated. The data set is global and provides
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monthly SST (Kennedy et al., 2015) and sea ice concentra-

tion (Titchner and Rayner, 2014) from 1850 to 2010 at 18
resolution. It is based on SST from ICOADS (International

Comprehensive Ocean Atmosphere Data Set, http://icoads.

noaa.gov/) and from the Met Office observational data-

base; SST retrievals from AVHRR Pathfinder V5 data

(1985�2007); and SST retrievals from the ATSR2 and

AATSR (1995�2011) METEO products. The in-situ data

are bias adjusted using an updated version of Kennedy

et al. (2011). The ensemble samples the accuracy of the

analysis by perturbing uncertain parameters. We use the

ensemble spread to quantify the accuracy of the data set,

which allows for time and space varying estimation of its

accuracy. Furthermore, we assume that observation errors

are decorrelated [i.e. R in eq. (6) is diagonal].

3. Global validation

Here, we assess the performance of NorCPM by comparing

the monthly averaged re-analysis against the assimilated

measurements (SST) and other independent measurements

such as sea level, heat content (HC) and salt content (SC).

NorCPM is compared to a corresponding 30-member en-

semble integrated forward from the same initial conditions

in 1950 and with the same external forcing as NorCPM,

but without assimilation (hereafter referred as FREE).

FREE would correspond to a typical climate projection

exercise where the system is constrained only by the external

forcing.

3.1. Assimilated SST

The performance of NorCPM in monitoring the variability

of SST is assessed in terms of root mean square error

(RMSE) and bias, and by comparing against FREE.

NorCPM is expected to show less error than FREE,

because the assessment is against the very same assimilated

SST data. Nevertheless, the comparison is useful to assess

the accuracy of the system over time. The statistics are

computed using monthly averaged SST anomalies (w.r.t.

the same 1950�2009 climatology used in the assimilation).

The RMSE and the bias are calculated from the ensemble

mean of NorCPM, FREE and observations. We also assess

the reliability of NorCPM. The reliability is defined as

the capability of the system to estimate its accuracy � the

ensemble spread (the standard deviation of the ensemble)

being used to quantify uncertainty.

DA reduces the RMSE and the bias consistently through-

out the whole study period, with no obvious degradation

(Fig. 1). There are pronounced maxima of RMSE in FREE

corresponding to the large El Niño events (in 1982�1983,
1986�1987 and 1997�1998) during which the amplitude

of the anomaly of SST is larger. Overall, the performance

of FREE is poorer after 1982, which coincides with the

availability of satellite data. The inclusion of this new data

type in HadISST2 leads to a reduction of the observation

error (cyan line) that is associated with better synchroni-

sation among the observation members. From that time,

the observation ensemble mean shows larger amplitude and

smaller scale spatial structures, and it becomes less compar-

able to FREE. Comparatively, NorCPM shows only a slight

increase in RMSE post 1982. Actually, NorCPM shows

lower RMSE than the observational data set before 1982

but is slightly poorer afterwards.1 In a perfect model

framework, the error in an assimilation run would reduce

withmore accurate observations.However, the spatial scales

of the features resolved in the observations post satellite era

are smaller and their inherent predictability as well as the

capability of our model to resolve them is reduced. Overall,

the accuracy of NorCPM is stable with an accuracy of

approximately 0.4 8C and no obvious bias.

1960 1970 1980 1990 2000

–0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Monthly RMSE (unit is in 8C for all variables) of NorCPM (thick red line) and FREE (thick green line) against the assimilated

SST anomaly. The contribution of the bias in the RMSE is plotted with the dashed line. The HadISST2 accuracy (i.e. the SD) is plotted in

cyan. The ensemble spread of NorCPM is in blue and the black line is stot, as defined in eq. (7).

1Note that the RMSE is calculated from the monthly averaged

model outputs and not from the ensemble of model states at

assimilation time (i.e. in the middle of the month). It is thus not

ensured that the RMSE is lower than the observation error.
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Figure 2a shows the spatial distribution of the time

averaged RMSE in NorCPM. The error is low in most

places (B0.4 8C) except in frontal regions where RMSE is

larger than 1.2 8C with a maximum in the Gulf Stream

region (1.9 8C). The reduction of error compared with

FREE (RMSEFREE - RMSENorCPM) is shown in Fig. 2b.

NorCPM reduces error everywhere. The reduction is larger

in places where the initial RMSE is large. However, the

reduction is comparatively larger for the Equatorial Pacific,

SPG and Kuroshio regions than for the Agulhas and the

Gulf Stream regions. In the latter regions, the observation

error is large (1.2 8C in the Agulhas region and 0.5 8C in the

Gulf Stream) and the model uncertainty seems compara-

tively low (between 0.4 and 0.7 8C), which results in a weak

impact of assimilation.

The reliability is investigated by analysing the spatial

and temporal match (i.e. amplitude and covariability) of the

total DA uncertainty with the RMSE. Here, the RMSE

is calculated against imperfect observations with an uncer-

tainty, sobs, and the total error is the sum of the observation

and model uncertainty squared:

rtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
obs þ r2

mod

q
; (7)

where ensemble spread, smod, represents the model

uncertainty.

In a perfectly reliable system, the RMSE equals the total

error (i.e. RMSE2 ¼ r2
tot, which occurs when the red and

the black lines coincide in Fig. 1). Our system is over-

dispersive � meaning that it underestimates its accuracy.

This improves when the observations error reduces, but

the spread in our system and its error remain similar.

The reasons for having an excessive spread in our system

are the following. First, the standard coupler in nowadays

earth system are only approximating the coupling between

the ocean and the atmosphere leading to numerical incon-

sistencies that spuriously enhance the physical stochasticity

of the variables at the boundary (Lemarié et al., 2015).

Second, we only update the ocean part of our system

leaving the atmosphere unchanged, which surely leads to

assimilation shock and enhanced spread at the boundary.

Third, the sampling error of ensemble methods (such as

the EnKF) leads to an underestimation of the analysed

error and a subsequent artificial reduction of the ensemble

spread (Anderson and Anderson, 1999; Bocquet, 2011;

Bocquet et al., 2015). In our system, the artificial collapse

is counteracted using ad-hoc (inflation-like) methods;

namely by moderation, pre-screening and DEnKF analysis

scheme itself (see Section 2.2). It is possible to tune down

the inflation-like methods, but it is safer to maintain a

system in an overdispersive regime because the accuracy

is only moderately degraded. While in an underdispersive

regime, the assimilation underestimates the corrections and

the accuracy of the system degrades rapidly (Sakov and

Oke, 2008).

Another important aspect of reliability is the time

covariability of stot and RMSE. The correlation between

the two curves in Fig. 1 is low (approximately 0.2). The

seasonal variability is well captured, but the trends and the

interannual variability are not. The trends have opposite

sign, with the trend of stot being negative as a response to

reduced observation error, while the accuracy of the system
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remains stable (see above). It is unclear why our system is

not capable of accounting for the interannual variability

(e.g. peaks in RMSE caused by large El Niño events), but

the observation error is also not much larger during these

events. Finally, we investigate the spatial reliability of the

system by comparing the spatial distribution of stot averaged

over the analysis period (Fig. 2c) with the RMSE (Fig. 2a).

The overall match is good and the two maps correlate well

(r�0.8) and have comparable amplitude. However, the

system underestimates slightly the error in some regions (in

particular, in the Gulf Stream) and slightly overestimates

the error in the regions of low error.

3.2. Steric global mean sea level

The global mean sea level (GMSL) evolves with time

depending on the steric changes (changes in heat and salt

content) and the contribution from the land ice (Bindoff

et al., 2007). NorESM does not account for land ice and the

GMSL in the following refers only to the steric contribution

that can be regarded as an integrated measure for global

ocean heat and freshwater content changes. Although this

basic validation seems trivial, it is challenging because DA

changes the steric content of the system during the update,

and no other observations than SST (nor relaxation) are

used to constrain the mean state. DA can introduce a drift

if the analysis is a biased estimator. This was the case in

Counillon et al. (2014), resulting in an exaggerated sea-level

drift. We use the aggregation method (Wang et al., 2016) to

ameliorate such drift (Section 2.2). The method was tested

with a computationally efficient version of NorESM for the

period 1980�2005 and reduced the spurious drift by a factor

10, but a weak decreasing sea-level drift remained. Here, the

robustness of the aggregation method is further demon-

strated, by testing it over a longer time period and with an

increased horizontal and vertical resolution of NorESM.

The estimation of steric sea-level change is compared with

the observed estimate for the period 1961�2003 [Bindoff

et al., 2007, Intergovernmental Panel on Climate Change

(IPCC) Assessment Report 4, p. 419].

The steric height trend from 1961 to 2003 in FREE is too

large compared with the IPCC estimate, although the

ensemble envelope overlaps the confidence interval of the

observed trend (Fig. 3). On the contrary, the steric height

trend in NorCPM is on the low side, albeit the ensemble

envelope overlaps the confidence interval of the observed

trend. This new validation confirms the conclusion from

Wang et al. (2016) that the aggregation method solves the

large drift found in Counillon et al. (2014) and produces an

acceptable GMSL trend, although it seems to introduce a

slight decreasing sea-level drift.

3.3. Altimetry

Spatial variations in SSH on interannual timescale are a

measure of dynamically induced density and ocean circula-

tion changes. In regions where the 1.5 layer approximation

for the ocean holds (i.e. an active less dense layer over a

much thicker and denser inactive layer), then SSH varia-

tions are closely related to upper ocean density changes

(Wyrtki and Kendall, 1967; Rebert et al., 1985). This

relation is strongest in the tropics where the density con-

trast between the two layers is greatest.

The SSH altimetry data set used for validation is the

gridded product from ARMOR3D_REP V3.1 monthly

(www.marine.copernicus.eu). It is based on the satellite

altimeter data (available from 1993 to present) produced

by Ssalto/Duacs and distributed byAviso with support from

theCentre national d’études spatiales (www.aviso.oceanobs.

com/duacs/). The product was re-gridded to a 18 resolution
in order to have a comparable resolution to the model. Here,

we are mainly interested in the capacity of our model to

monitor the variability on interannual-to-decadal timescale.

We analyse the time variability of the SSH at yearly time

scale, and the time series are detrended to remove the long-

term trend investigated in Section 3.2. The correlation for

FREE is very small and not presented. In Fig. 4, the

correlation in NorCPM is very high in the equatorial and

in the North Pacific. In the Atlantic, a high correlation is

found for the SPG and the Nordic Seas.

3.4. Heat and salt content

This section investigates the capability of NorCPM to

monitor the yearly variability of HC and SC of the top

200 and 500m. The correlation between the ensemble mean

of NorCPM and the objective analysis EN4 (Good et al.,

2013, version EN.4.1.1) is shown in Fig. 5. The observations

used in EN4 are not assimilated in NorCPM and EN4 can
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Fig. 3. Estimated global mean sea level (steric) from NorCPM

(red), FREE (blue) and observations (plain grey line) for the

period the period 1961�2003. The shading represents the ensemble
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confidence interval of the trend in the observations.
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be considered as independent. The correlation is calculated

using detrended time series in order to remove the long-term

steric change related to the response to the anthropogenic

forcing. The correlation for FREE is not shown because it is

very low once detrended. In the top 200m, the correlation

for the HC is high in the North Atlantic, the North Pacific

and the equatorial Pacific. The correlation remains high for

the HC of the top 500m. There is also some skill in the SC

that highlights the multivariate property of our DAmethod,

but the overall skill is weaker than for HC. The regions of

higher skill match those of the HC. There are some regions

where the correlation is weakly negative, but they should

not be over interpreted, as there is a high shortage of salinity

observations. For example, the negative correlation pattern

in the Arctic seems inconsequential because no observations

are available there. Once again, the SPG and the Nordic Sea

stand out as regions of higher skill and NorCPM seems

capable of monitoring the heat and (to some extent) salt

content variability there.

4. The North Atlantic SPG region

The subtropical and the SPG in the North Atlantic work as a

mixing battery of warm and saline Subtropical Water, and

cold and fresh Subarctic Water, where the characteristic of the

waters flowing towards and into the Nordic Seas depends on

the relative strength of the two gyres (Hátún et al., 2005). A

weakening of the SPG is related to a larger amount of

Subtropical Water reaching the Nordic Seas. Furthermore, it

has been shown that the characteristics of the waters entering
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the Nordic Seas over the Greenland�Scotland Ridge are

closely related to the strength and width of the SPG,

represented by the SPG index. Monitoring and predicting

the variability of the SPG have been achieved in state-of-

the-art prediction systems (Robson et al., 2012a, 2012b;

Yeager et al., 2012; Msadek et al., 2014), but to the best of

our knowledge, it has never been achieved with SST only in a

real framework. The SPG region stands out in our global

validation (HC, SC and SSH) as a region of higher skill. In

the following, a deeper investigation is carried out, first using

the SPG index and second analysing the vertical temperature

anomaly in the SPG region and its connection with the

Atlantic Meridional overturning circulation (AMOC).

4.1. The subpolar Gyre index

The SPG index is defined as the SSH anomaly in the box

(longitude: 15�608W; latitude 48�658N), as proposed in the

coordinated ocean-ice reference experiments II protocol

(Danabasoglu et al., 2014). A strong (weak) SPG � meaning

a strong (weak) barotropic SPG mass transport � is char-

acterised by a negative (positive) SPG index. In Fig. 6,

we compare the SPG index from NorCPM and FREE with

that of the altimetry data available from 1993, that was

already used in Section 3.3. FREE shows a slow increase that

is associated with the GMSL increase (see Section 3.2). The

ensemble spread is large, which indicates that the ensemble

samples disparate phases of the SPG. In NorCPM, the

ensemble spread is narrower, suggesting that the ensemble

members are better synchronised. There is a slight reduction

in the ensemble spread with time, which suggests that the

synchronisation between members is improving with time

possibly because of the improved accuracy of SST with time

or due to the cumulative benefit from the assimilation. The

ensemble mean in NorCPM shows pronounced phases of

positive and negative anomalies, which starts with a weak

SPG phase during 1950�1970, followed by a strong SPG

phase during the beginning of the 1970s and 1980s. Finally,

there is a sharp transition towards a weak SPG around

1995�1996. These phases of the SPG are in good agreement

with previous studies (Robson et al., 2012a, 2012b; Yeager

et al., 2012; Msadek et al., 2014). The match with the ob-

servations in the latter period is striking and it captures not

only the shift but also captures the year-to-year variability.

The system shows relatively good reliability and the ob-

servations fall within the ensemble envelope.

4.2. The stratification of the subpolar Gyre

Thevariabilityof the SPG isknown tobe related to the change

of its water properties in the thermocline (the upper 1�2km),

which is driven by the convergence of heat (Williams et al.,

2014). The evolution of the temperature anomaly in the SPG

region is investigated with a Hovmöller plot of the averaged

temperature anomaly of the SPG region with respect to the

period 1950�2010 (see Fig. 7). The estimate of NorCPM is

compared to that of theEN4objective analysis alreadyused in

Section 3.4. The accuracy of the EN4 varies in space and time

with the availability of observations. The percentage of

available observations is added as an indicator of its accuracy.

The temperature anomaly in NorCPM agrees generally well

withEN4, in particular at locationswheremanymeasurements

are available. NorCPM is somewhat smoother, which is

expected as the ensemble mean is plotted. The latest

transition from a cold and strong SPG (during 1982�1995)
to a warm and weak SPG (1996�2009) compares very well

with observations in timing, amplitude and depth of the

anomaly pattern. Some discrepancies can be noticed below

2000m where both EN4 and NorCPM become very

uncertain. In NorCPM, this is because the influence from

SST at such depth is not expected and in EN4 this is because

there are almost no observations available below 2000m.

There are also some discrepancies in the upper ocean during

the period 1950�1970. While both EN4 and NorCPM
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indicate that the SPG is anomalously warm during this

period, EN4 exhibits a strong vertical stratification not seen

in NorCPM. However, this stratification in EN4 may be an

artefact of interpolation, as upper ocean observations are

scarce during this period, and this type of stratification is not

obvious in the later period. Both EN4 and NorCPM suggest

a short cold period in the mid-1970s and a warm anomaly

around 1980 in relatively good agreements.
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4.3. Interaction with the AMOC

Many studies have identified the interplay between the SPG

and the AMOC. Zhang (2008) proposed that the variability

in the SPG is a part of a multidecadal variation and that

AMOC shows a tight opposite to the SPG. The shift in the

1996 has been attributed to a response to the persistent

positive phase of the North Atlantic Oscillation (NAO),

which leads to an increase in the AMOC that, in turn, leads

to a warming, spin-down and a westward shift of the SPG

(Robson et al., 2012a, 2012b; Yeager et al., 2012; Msadek

et al., 2014). We consider the maximum monthly poleward

transport at 26.5 8N and 45 8N as two indices of AMOC

strength (Fig. 8). The average of the AMOC at 26.5 8N
in NorESM is 30.8 Sv (1 Sv � 106m3s�1), which is well

above the 17.4 Sv estimate using observations for the year

2004�2011 (Srokosz et al., 2012) and is in the upper range

of AMOC strength among models participating in CMIP5

(Reintges et al., 2016). The AMOC is measured continu-

ously from April 2004 at 26.5 8N by a joint US�UK Rapid

Climate Change�Meridional Overturning Circulation and

Heat flux Array (RAPID�MOCHA; Johns et al., 2011;

Smeed et al., 2015). The evolution of the observed AMOC

at 26.5 8N is compared with NorCPM (Fig. 8). The over-

lapping period with our simulation is too short to hold

any firm statement, but the preliminary comparison is

encouraging with a strong decreasing trend and premise of

a rebound at the end of the time series both in NorCPM

and in the observations. However, the decreasing trend of

the model is too moderate, with a reduction of 2 Sv instead

of 4.5 Sv in the observation. Also unlike for the SPG index,

the observation does not fall within the ensemble envelope,

which indicates that the system lacks reliability. As for

the SPG, we can notice that the spread seems to be smaller

post 1982, which may indicate that the system is better con-

strained by the increase in accuracy of the observations

associated with the introduction of satellite data.

The variability of the AMOC prior to the observed period

is also in relatively good agreement with the literature. The

increase of AMOC from the 1970s followed by a subsequent

decrease during the 1990s has been reported in several

studies (Robson et al., 2012a, 2012b; Yeager et al., 2012;

Pohlmann et al., 2013; Karspeck et al., 2015) and is

attributed to the response to the long positive NAO.

However, there is large uncertainty in AMOC changes in

re-analysis, especially in the subtropics (Keenlyside and

Ba, 2010; Karspeck et al., 2015). The AMOC variability at

45 8N shows similarities to the one obtained with SST

nudging in Swingedouw et al. (2012). In our model, the

AMOC at 458N is tightly connected to the SPG suggesting

that the SPG drives the AMOC variability at this latitude

(Hátún et al., 2005; Zhang, 2008). There seems to be a

relation between the multidecadal variability of AMOC

at 26.5 and 458N with the latter leading the former with a

lag of several years, but the period of study is too short.

Such mechanism was proposed in Zhang (2010), where

the relation between the SPG and the subtropical AMOC is

related to the propagation speed of the anomaly in that

region. Such relation has been found to vary strongly from

model to model (Ba et al., 2014).

4.4. Properties of the covariance: isopycnal and flow

dependent

The purpose of this section is twofold: first, it is to identify

the impact of constructing the covariance in isopycnal rather

than in z coordinates and, second, it is to investigate the flow-

dependent properties of our covariance matrix used for DA.

This analysis is done for a small box domain in the middle of

the Labrador Sea, a region of active wintertime ocean

convection that penetrates down to 2000m and influences

the AMOC (Marshall and Schott, 1999; Latif et al., 2006).

The importance of vertical coordinates for the purpose of

DA was studied in Gavart and De Mey (1997), who found

that isopycnal coordinates are more efficient than

z coordinates for capturing the vertical structure of a region

in theAzores. Similarly, Srinivasan et al. (2011) found that the

performance of DA of an isopycnal model is degraded when

the covariance is constructed in z coordinates, rather than in

the native isopycnal coordinates. However, the degradation

was assumed to be related to information lost by interpolating

back and forth between the two vertical coordinate systems.

Here, we revisit this issue by comparing the correlation

between SST and the vertical profile when the ensemble

covariance is constructed in z coordinates versus density

coordinates (isopycnal). In Fig. 9, each column corresponds

to the ensemble correlation calculated at the time of assimila-

tion (in the middle of the month) during the year 2010. The

correlation between SST and isopycnal temperatures, sali-

nities and layer thicknesses are plotted on the left, while on the

right the temperature and salinity fields are interpolated to z

coordinates for each member prior to the calculation of the

correlations. Note that the depth of each isopycnal layer is

plotted at the averaged depth of the ensemble mean.2

As expected, there is a very high correlation between

SST and temperature within the mixed layer and a negative

correlation between SST and the layer thicknesses within

the mixed layer (Fig. 9). Hence, an increase of SST results

in an increase of the stratification and a thinning of the

mixed layer. The correlations with the layer thicknesses

seem weak but are found to be important. Indeed, an

2Some of the correlations for the first layer are undefined because

the variance of the ensemble is zero as all members have reached

the maximum thickness of 5m.
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attempt of re-analysis where the layer thicknesses were not

updated by assimilation shows a strong degradation in the

skill of monitoring the SPG index (not shown). The

correlations of SST with salinity within the mixed layer,

and with temperature and salinity below the mixed layer

are most significant in the late winter. This is consistent

with Labrador Sea convection that occurs in late winter

when strong heat fluxes cool surface waters, destabilising

the water column. During convection, the dense colder and

fresher surface water sinks in plumes, while the less dense

warmer and more saline Irminger Sea water rises to the

surface (Marshall and Schott, 1999). Thus, following deep

convection, surface waters will be warmer and more saline

and deeper waters will be colder and fresher. This explains

why SST is positively correlated with salinity in the clima-

tological mixed layer, and negatively correlated with both

temperature and salinity below the mixed layer in the

late winter months. Another effect that may enhance

the anti-correlation of SST with subsurface salinity in the

isopycnal model is the conjugate adjustment of salinity that

is necessary to preserve density of isopycnal layers below the

mixed layer. The detrainment of surface waters from the

mixed layer can introduce long-term predictability, as

these properties are ‘stored’ in isopycnal layers. This pro-

cess is represented well by the isopycnal model.

The correlations in z coordinates are almost identical as

when expressed in isopycnal (or density) coordinateswithin the

mixed layer. This is expected because the depth of the mixed

layer is almost identical in all members. However, the correla-

tions in late winter with the temperature and salinity below the

mixed layer is blurrier and deeper, because the correlation in

this depth range considers members that are still in the mixed

layer and others that have already transited to isopycnal

coordinates. Below 1000m, the correlation of SST with

temperature and salinity does not show the reversal pattern

that was seen when constructing the covariance in isopycnal

coordinates. At such depth, the position of the isopycnal layers

varies and the ensemble formulated in z coordinates combine

memberswithdifferentdensities.This can introduce adiffusion

of the correlationor even spurious correlation as it increases the

risk for non-Gaussian distribution (e.g. bimodality).

Similarly, to what is described in Gavart and De Mey

(1997), this comparison highlights the fact that formulating

the covariance in z coordinates fails to dissociate the dis-

placement of isopycnal from an anomaly of temperature.

A front in SST can have a signature in the position of

isopycnal below the thermocline, which implies that DA

with a covariance matrix formulated in isopycnal coordinates

has the potential to extract more information when assimilat-

ing SST than if covariance are constructed in z coordinates.

Furthermore, updating the ensemble in z coordinates induces

spurious diapycnalmixing.Nevertheless, one drawback of the

isopycnal framework is that the combination of water of

similar density (with different temperatures and salinities) can

introduce artificial caballing, but Counillon and Bertino

(2009) and Wang et al. (2016) infer that it is negligible.

We are analysing the time variability of the dynamical

covariance, as it is a singular property of the EnKF DA

method. Figure 9 shows a pronounced seasonality in the

covariance in the Labrador Sea that demonstrates the need

for time-varying covariance. Seasonal covariance can be

achieved with computationally ‘cheaper’ DA methods; for

example, by using a seasonally varying static ensemble (Xie

and Zhu, 2010).
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In the Labrador Sea, the covariance of April SST with

temperature and salinity over the water column shows

pronounced yearly variability (see Fig. 10). This month was

selected because it ismost related to variations in Labrador Sea

water formation, which has been linked to SPG and AMOC

variations. The reversal of the correlation at depth observed in

2010 is recurrent in other years, particularly before 1996.While

between 1996 and 2008, SST is not correlatedwith temperature

or salinity below the mixed layer. This relation is consistent

with observations that show Labrador Sea wintertime deep

convection stronglyweakened in themid-1990s, only to resume

in 2008 (Våge et al., 2009; vanAken et al., 2011). The variations

in Labrador Sea convection have been linked to variations in

the SPG and AMOC (Latif et al., 2006; Msadek et al., 2014;

Keenlyside et al., 2015).

5. Summary and conclusions

A re-analysis of NorCPM for the period 1950�2010
(doi: 10.11582/2016.00002) is introduced and validated.

NorCPM assimilates the stochastic monthly HaISST2 ob-

servations with the EnKF into NorESM. The global RMSE

for SST anomalies is around 0.4 8C, and there is no clear

bias or degradationwith time. The signature of the transition

of the HadISST2 observation to the satellite era is small.

Still, it highlights the challenge of providing consistent re-

analysis with a heterogeneous observational network. The

system is found overdispersive for SST, particularly before

the satellite era. NorCPM shows good spatial reliability

for SST, but temporal reliability is poor only capturing the

seasonal variability of the RMSE. The steric GMSL rise of

the system is on the low side compared with the observed

estimate, but it is acceptable. This study further demon-

strates that the aggregation method (Wang et al., 2016) can

successfully constrain the drift induced by the linear analysis

update of the layer thickness.

The system shows good skill against independent data set:

SSH, and heat and salt content of the top 200 and 500m.

The benefit is mainly located in the Equatorial and North

Pacific, and in the North Atlantic SPG and Nordic Seas.

NorCPM demonstrates accurate and reliable skill for mon-

itoring the SPG strength, and it shows some skill for

monitoring the vertical evolution of the temperature anomaly

in the SPG region. Although the observation period for the

AMOC is yet too short, NorCPM shows encouraging results

compared with observations and other studies. Prior to the

observed period, the anomaly of AMOC and SPG show

similarities with other existing re-analysis products (Robson

et al., 2012a, 2012b; Swingedouw et al., 2012; Yeager et al.,

2012; Pohlmann et al., 2013). Some of the relations between
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the AMOC and the SPG proposed in the literature are also

satisfied inNorCPM: namely, the variability of the SPG index

is tightly related to the AMOC at 458N (Hátún et al., 2005;

Zhang, 2008), and the AMOC at 458N leads the AMOC at

26.58N by a few years (Zhang, 2010; Ba et al., 2014).

The impact of constructing the covariance in isopycnal

coordinates rather than z coordinates and using flow-

dependent DA method was studied in the Labrador Sea.

Although the current analysis does not demonstrate the

necessity of isopycnal flow-dependent covariance, it demon-

strates some of its advantages. Expressing the covariance

matrix in isopycnal coordinates allows for dissociating the

role of anomaly in the water masses on isopycnal surfaces

from a displacement of isopycnic surfaces, in good agree-

ment with Gavart and DeMey (1997). As the displacements

of isopycnal surfaces have a deep signature, it deepens

the impact of assimilation when assimilating surface data.

The ensemble covariance in the Labrador Sea shows a strong

variability for seasonal and multidecadal time scale; the

latter being tightly connected to the SPG shift. This empha-

sise the benefit of a flow-dependent DA method.

NorCPM achieved some skill by assimilating SST only,

which suggests that the system can be used for providing a

long re-analysis covering the whole SST observation period

(from 1850). However, most of the validation was carried

during the later decades at a time when the SST observation is

significantly better. It is unclear whether NorCPM would be

capable of maintaining comparable level of skill during the

whole SST observation period, in particular during the early

period when the accuracy of the HadISST2 is significantly

poorer. Still, we expect that a full stochastic system (observa-

tions and models) such as NorCPM is best suited to handle

such a problem, as demonstrated here during the transition to

satellite era. The current re-analysis of NorCPM will serve as

initial state for climate predictions that will contribute to the

CMIP version 6 decadal prediction exercise. Further im-

provements to the system are ongoing; namely by assimilating

other data type (SSH, temperature and salinity hydrographic

profiles) or by assimilating in (or across) the other compart-

ments (land, ice and atmosphere).

Finally, the current re-analysis will be used to identify the

influence of the ocean variability on the other compartments in

a fully coupled framework. The influence of the ocean on the

other compartments is occurring dynamically in NorCPM

within themonthly assimilation cycle. Comparing the distribu-

tion of the relatively large ensemble of NorCPM and FREE

canbeused to estimate the influence of the oceanon the chaotic

behaviour of the atmosphere and the ice compartment.
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